

SEPARATION OF H₂/CO BY THE SELECTIVE SORPTION PROPERTY OF H₃PMo₁₂O₄₀ EMBEDDED IN POLYVINYLALCOHOL MEMBRANE

Jong Koog Lee, In Kyu Song and Wha Young Lee[†]

Department of Chemical Engineering, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, Korea

(Received 5 July 1994 • accepted 28 March 1995)

Abstract—H₂ and CO permeabilities through H₃PMo₁₂O₄₀-blended polyvinylalcohol membrane and catalyst-free polyvinylalcohol membrane were measured. The blended membrane showed better selectivity and higher permeation flux of H₂ than the catalyst-free polyvinylalcohol membrane. Its enhanced H₂ separation ability was mainly due to the selective sorption property of PMo embedded in the polyvinylalcohol membrane.

Key words: PVA, 12-Molybdenophosphoric Acid, Blending, H₂-CO Separation

INTRODUCTION

A heteropoly acid has acidic and redox catalytic properties [Mizuno et al., 1985; Song et al., 1991; Song et al., 1994; Song et al., 1991]. It also shows a characteristic adsorption behavior [Mizuno, 1987; Okuhara et al., 1983; Song et al., 1993; Lee et al., 1994] depending on the properties of adsorbates. Most nonpolar chemicals are adsorbed only on its surface, while polar compounds like water, alcohols, pyridines and ethers mostly penetrate into its bulk to form a pseudo-liquid phase [Okuhara et al., 1983]. In other words, heteropoly compounds are highly soluble in polar solvents. Taking advantage of this property, a heteropoly acid can be blended with a polymer by using a common solvent dissolving both a heteropoly acid and a polymer [Song et al., 1993, 1994a, 1992, 1994b]. In this study, the H₃PMo₁₂O₄₀ (denoted as PMo)-blended polyvinylalcohol (denoted as PVA) membrane was prepared and its separation ability of H₂/CO was examined at room temperature.

EXPERIMENTAL

PMo was prepared according to the method in a literature [Tsigidinos, 1974]. PMo was recrystallized after dissolving the prepared catalyst in water to eliminate the insoluble components. PMo was calcined at 300°C, before it was used for blending with PVA (Elvanol 71-30 from Du Pont, 99% hydrolyzed PVA, M=52,000). In order to prepare the PMo-blended PVA (denoted as PMo-PVA) membrane, various solvents were tested to find a common solvent dissolving both PMo and PVA. It was found that they were highly soluble in water. Viscous PVA-water solution was made after slight heating at 50°C for 4 hours. The opaque solution was changed into a transparent solution. PMo-free PVA membrane was prepared by casting the transparent PVA(4 g)-water(36 g) solution on a PMMA plate and by drying it in air for 4 hours and subsequently under vacuum for 2 hours. PMo-PVA membrane was also prepared by casting greenish transparent PMo(1 g)-PVA(4 g)-water(36 g) solution on a PMMA plate like the procedure of the PVA membrane preparation.

[†]To whom all correspondences should be addressed.

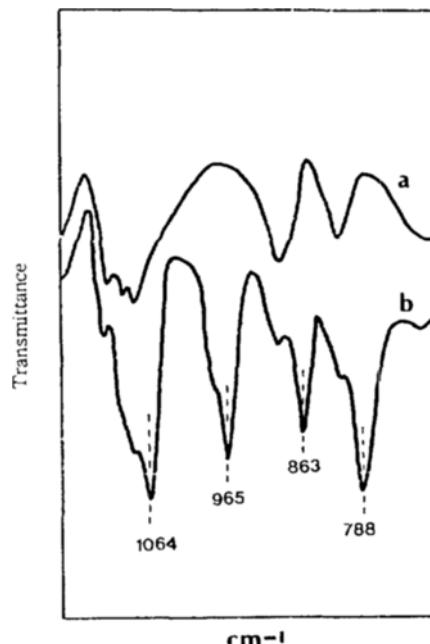


Fig. 1. IR Spectra of (a) PVA membrane and (b) PMo-PVA membrane.

Pure H₂ and CO permeabilities were measured using a conventional apparatus [Nakagawa, 1994] equipped with a bubble flow meter. The thickness of PVA and PMo-PVA membrane were 8 μm and 22 μm , respectively. The cross-sectional permeation area was 17.65 cm^2 . The permselectivity between H₂ and CO was defined as the permeability ratio of the two pure gases. In order to confirm the role of PMo in the PVA membrane, the amounts of H₂ and CO adsorption in/on PMo were also measured.

RESULTS AND DISCUSSION

Fig. 1 showed the IR spectra of PVA and PMo-PVA membrane. The primary structure of PMo can be identified by the four characteristic bands ranging from 700-1200 cm^{-1} . Bands at 788 cm^{-1}

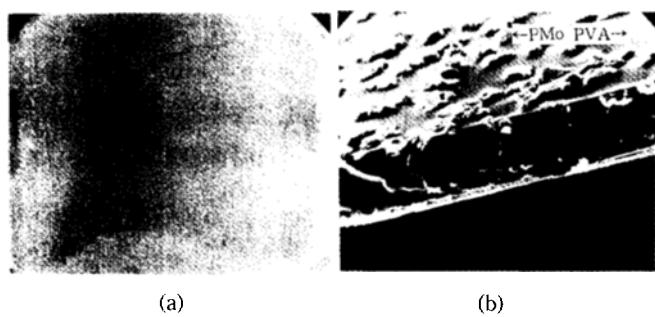


Fig. 2. SEMs of (a) PVA ($\times 2,000$) and (b) PMo-PVA (cross-section, $\times 1,000$).

Table 1. Permeabilities of H₂ and CO through PVA and PMo-PVA membrane at 25°C

Membrane	Gas	Permeability cm ³ ·cm/cm ² ·sec·cmHg	Permselectivity H ₂ /CO
PVA	H ₂	9.76×10^{-9}	1.24
	CO	7.88×10^{-9}	
PMo-PVA	H ₂	3.31×10^{-7}	2.96
	CO	1.12×10^{-7}	
H ₂ permeability ratio (PMo-PVA/PVA)		33.91	
CO permeability ratio (PMo-PVA/PVA)		14.21	

and 863 cm⁻¹ represent Mo-O-Mo bondings. Bands at 965 cm⁻¹ and 1064 cm⁻¹ signify Mo=O and P-O bonds, respectively. The four characteristic bands of PMo are shown at each wave number in the PMo-PVA membrane. IR bands other than due to PMo in the PMo-PVA membrane are due to the PVA membrane. This fact means that the blending is physical.

Fig. 2 showed the SEMs of PVA and PMo-PVA membrane. PVA and PMo-PVA membrane were nonporous membranes. However, visible evidence representing PMo was found in the PMo-PVA membrane. This indicates that PMo exists as a recrystallized form in the blended membrane. It can be inferred from the fact that the catalytic action of PMo embedded in the PVA membrane may play a distinct role in determining the separation ability of the membrane. In other words, not only gas permeation through the PVA part but also catalytic action of PMo, presumed to be the adsorption property, determines the separation ability of the PMo-PVA membrane.

Table 1 showed gas permeabilities through two membranes. H₂ and CO permeability through the PVA membrane are small and have an order of 10⁻⁹. Permselectivity of H₂/CO through the PVA membrane is 1.24. However, the PMo-PVA membrane shows large H₂ and CO permeability of order 10⁻⁷, and permselectivity of H₂/CO through it is 2.96. This result means that selective gas separation mainly occurs not through the PVA part but through the PMo part in the PMo-PVA membrane. The H₂ permeability through the PMo-PVA membrane is about 34 times higher than that through the PVA membrane. From these results, it can be summarized that the PMo-PVA membrane shows better selectivity and higher permeation flux of H₂ than the PVA membrane. In other words, the selective and high flux H₂ separation through the modified PVA membrane was possible by blending PMo with PVA.

In order to confirm the role of PMo embedded in the PVA membrane, an adsorption measurement was carried out. PVA mem-

Table 2. Adsorption amounts of H₂ and CO on PMo at 25°C

Gas	Molecules/PMo-Keggin unit
H ₂	0.06
CO	0.02

brane itself shows no adsorbing property of H₂ and CO. As shown in Table 2, adsorption amounts of H₂ and CO in/on PMo are 0.06 and 0.02 molecules/Keggin Unit, respectively. Much more amounts of H₂ are adsorbed on PMo than CO. Considering the fact that gas separation in the PMo-PVA membrane mainly occurs through the PMo part, it may be concluded that the adsorbing property of PMo plays a major role in the selective and high flux separation of H₂ in the PMo-PVA membrane. Although its performance is somewhat lower than the commercialized membranes, it is recommended that the commercialized membrane can be modified by this method for better performance.

CONCLUSIONS

It is concluded that PMo-PVA membrane was easily prepared by blending PMo and PVA using water as a common solvent. The PMo-PVA membrane showed better selectivity and higher permeation flux of H₂ than the PVA membrane. Its enhanced H₂ separation ability was mainly due to the selective sorption property of PMo embedded in the PVA membrane.

ACKNOWLEDGEMENT

The authors acknowledge the financial support of Daelim Industry Co. Ltd. for this work.

REFERENCES

- Lee, J. K., Song, I. K. and Lee, W. Y., "Methyl tert-Butyl Ether Decomposition over Heteropoly Acid Catalyst in a Cellulose Acetate Membrane Reactor", *Catal. Lett.*, **29**, 241 (1994).
- Misono, M., "Acidic and Catalytic Properties of Heteropoly Compound", *Mater. Chem. Phys.*, **17**, 103 (1987).
- Mizuno, N., Watanabe, T. and Misono, M., "Reduction-Oxidation and Catalytic Properties of 12-Molybdoephosphoric Acid and Its Alkali Salts. The Role of Redox Carriers in the Bulk", *J. Phys. Chem.*, **89**, 80 (1985).
- Nakagawa, T., "Applications and a View of Gas Separation by Membranes in Japan", *Memb. J.*, **4**(1), 9 (1994).
- Okuhara, T., Hashimoto, T., Misono, M. and Yoneda, Y., "Evidence for 'Pseudo-Liquid Phase' in the Dehydration of Isopropanol over H₃PW₁₂O₄₀", *Chem. Lett.*, 573 (1983b).
- Okuhara, T., Kasai, A., Hayakawa, N., Yoneda, Y. and Misono, M., "Catalysis by Heteropoly Compounds. VI. The Role of the Bulk and Acid Sites in Catalytic Reactions over Na_xH_{3-x}PW₁₂O₄₀", *J. Catal.*, **83**, 121 (1983b).
- Song, I. K., Lee, J. K., Song, J. C. and Lee, W. Y., "Formation and Role of Acid Sites of Heteropoly Acid Catalysts", *J. Kor. Ind. Eng. Chem.*, **5**(3), 431 (1994).
- Song, I. K., Lee, W. Y. and Kim, J. J., "Application of Heteropoly Acid Catalyst in Inert Polymer Membrane Catalytic Reactor in Ethanol Dehydration", *Catal. Lett.*, **9**, 339 (1991).
- Song, I. K., Lee, J. K. and Lee, W. Y., "Preparation and Catalytic Activity of H₃PMo₁₂O₄₀-Blended Polymer Film for Ethanol Con-

version Reaction", *Appl. Catal.*, **119**, 107 (1994).

Song, I. K., Lee, W. Y. and Kim, J. J., "Methyl t-Butyl Ether Decomposition in an Inert Membrane Reactor Composed of 12-Tungstophosphoric Acid Catalyst and Polyphenylene Oxide Membrane", *Appl. Catal.*, **96**, 53 (1993).

Song, I. K., Lee, W. Y. and Kim, J. J., "Catalytic Polymer Membranes Prepared by Blending 12-Tungstophosphoric Acid Catalyst and Organic Polymer", *Polymer (Korea)*, **16**(2), 209 (1992).

Song, I. K., Lee, J. K. and Lee, W. Y., "Control of Catalytic Properties of Heteropoly Acid by Blending it with a Polymer", *J. Kor. Ind. Eng. Chem.*, **5**(5), 819 (1994).

Song, I. K., Moon, S. H. and Lee, W. Y., "Catalytic Properties of Thermally Decomposed 12-Molybdophosphoric and 10-Molybdo-2-Vanadophosphoric Acids", *KJChE*, **8**(1), 33 (1991).

Song, I. K., Shin, S. K. and Lee, W. Y., "Catalytic Activity of $H_3P\ Mo_{12}O_{40}$ -Blended Polysulfone Film in the Oxidation of Ethanol to Acetaldehyde", *J. Catal.*, **144**, 348 (1993).

Tsigdinos, G. A., "Preparation and Characterization of 12-Molybdophosphoric and 12-Molybdsilicic Acids and Their Metal Salts", *Ind. Eng. Chem. Prod. Res. Dev.*, **13**(4), 267 (1974).